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Brownian reorientation in smectic phases
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The rotation of molecules around their long axes is in� uenced by the in-plane order in smectic
phases. Assuming a Brownian reorientation process, the eŒect of polar and quadrupolar order
on the dielectric spectrum is investigated. In the case of quadrupolar order two modes should
be visible, while only one mode arises if the order is polar.

1. Introduction phase. However, systematic torques resulting from the
anisotropy of the molecular packing in the smecticIn smectic phases the rod-like molecules reorient

around their short and long axes. As both reorientation layers are not necessarily weak in all biaxial phases. For
example, if slab-like molecules form a biaxial smectic Mmodes have substantially diŒerent relaxation frequencies,

these processes can be resolved by dielectric spectroscopy. phase (� gure 1), the rotational hindrance could be rather
strong. In this case the eŒective potential, which dependsThe slower process, the rotation around the short axes,

is usually detected in a frequency region between one on the polar angle of the lateral molecular dipole direction,
has two equal minima. Recently, ordered smectic phasesand a few hundred kilohertz [1, 2], whereas the rotation

around the molecular long axes produces a dispersion with banana-like or chevron-like molecules were detected
[7]. In the ordered state, the tips of the chevrons areat much higher frequencies (up to one gigahertz) [3–5].

In addition to these molecular processes, cooperative uniformly aligned parallel to the smectic layers. Then the
corresponding rotator potential has only one minimum.low frequency modes appear in smectic phases with long

range in-plane order. Especially, the relaxation of the Since there should be a strong steric hindrance if two
adjacent banana-like molecules adopt an antiparallelferroelectric ordering in the chiral smectic C phase leads

to a strong dielectric response [6]. Slow cooperative orientation, the potential barriers are expected to be
much higher than barriers in the smectic C phase.processes also in� uence the dielectric relaxation of

antiferroelectric and ferrielectric smectic liquid crystals. In this paper we investigate how a strong lateral order
in a smectic layer can in� uence the high frequencyThe fast molecular rotations around the long axes in

the uniaxial smectic A phase produce a Debye spectrum, dielectric spectrum, which is attributed to the molecular
reorientation around the molecular long axes. This modewhich is characterized by a single relaxation time. The

high frequency spectrum is not substantially changed in is supposed to be a molecular process clearly distinguish-
able from the cooperative modes at low frequencies.the smectic C phase, although the C phase is biaxial. This

surprising result can be explained by the observation Each molecule can be considered as a uniaxial rotator
with transverse dipole moment, which can couple to anthat the biaxiality in the smectic C phase is rather weak.

The magnitude of the eŒective pair potential for the
hindrance of the molecular rotation around the long
axes is small compared with the mean thermal energy
of a rotator. In this case the high frequency dielectric
spectrum of a biaxial phase cannot be distinguished from
the corresponding spectrum of the uniaxial smectic A

Figure 1. Rod-like, banana-like and slab-like molecules in a*Author for correspondence;
e-mail: schlacken@chemie.uni-halle.de biaxial smectic layer.
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780 H. Schlacken and P. Schiller

external electric � eld perpendicular to the rotator axis. P (Q, t|Q ¾ , 0) for rotator models with cosine potentials like
U*(Q). For bU* 1 a perturbation expansion is appro-The Brownian motion of a rotator is in� uenced by the

eŒective potential produced by the surrounding molecules. priate [10], but for bU* 1 numerical methods [9]
must be used. Therefore, we use modi� ed potentials , whichThe deviations from a simple Debye spectrum are

evaluated for potentials with one and two minima. also reproduce polar and quadrupolar order (� gure 2).
These model potentials are formally written as

2. Linear response of the dipoles
The eŒect of an alternating � eld E(v) on rotating dipoles bUn (Q) 5 ( Õ 1)nC2H1

p
Q Õ H1 (2n Õ 1)Dis described by the linear relation p (v) 5 x(v)E(v), where

p (v) is the dipole moment induced by the electric � eld
for (n Õ 1)p < Q < np (3)

and x(v) is the susceptibility. We consider an ensemble
of uniaxial rotators with transverse dipole moments m. and
The orientation of a rotator is de� ned by a polar angle
Q ( Õ p < Q < 1 p). In a smectic sample, the molecular

bUn (Q) 5 ( Õ 1)nC4H2
p

Q Õ H2 (2n Õ 1)Dlong axes may be macroscopically oriented due to con-
straints imposed by the smectic layers and by boundary
conditions, which � x the director to the substrate surfaces for (n Õ 1)

p

2
< Q < n

p

2
(4)

of a sandwich cell consisting of plane parallel plates. But
the preferred direction (angle Q) of the transverse dipoles

where H1 > 0, H2 > 0. In both formulae (3) and (4), n isis usually diŒerent in various domains of a smectic
an integer indicating a region between two de� ectionsample. Assuming that these domains are arbitrarily
points. The transition probability P (Q, t|Q ¾ , 0) for thealigned, the susceptibility can be expressed as [8]
Brownian reorientation satis� es the Fokker–Planck
equation [9]

x(v) 5 x0CK(0) 1 iv P2

0
dtK(t) exp (ivt)D (1 )

P
t

5 DR
2P
Q2

1
Q

(VP) (5)where x0 5 brm2 /2, b 5 1/(kT ), r is the particle density, v
is the frequency and K(t) 5 7 cos(Q(t) Õ Q(0)) 8 is the two-

where DR 5 kT /fR is the eŒective diŒusion coe� cient fortime correlation function attributed to the reorientation
the rotational motion, V 5 f Õ 1

R (dU/dQ) is the angularof the lateral dipole. The correlation function K(t) is
velocity and fR is the rotational friction coe� cient.obtained from the relation [9]
The transition probability satis� es the initial condition
P (Q, 0|Q ¾ , 0) 5 d(Q Õ Q ¾ ). Equation (5) can be written inK(t) 5 P +p

Õ p

dQ P +p

Õ p

dQ ¾ P(Q, t|Q ¾ , 0)Peq (Q ¾ ) cos (Q Õ Q ¾ )
the short-hand notation P/ t 5 L P. Then the ansatz
P~ Y (Q) exp ( Õ lt) leads to the eigenvalue problem(2)
LY

n 5 Õ l
n
Y

n
, where the operator L is non-hermitean.

where Peq (Q ¾ ) denotes the Boltzmann distribution for The replacements exp(W /2)L exp( Õ W /2) � L and
the rotator ensemble and P (Q, t|Q ¾ , 0) is the transition exp(W /2)Y

n
� Y

n
with W 5 bU/2 lead to a modi� ed

probability of a stationary Markovian process.

3. Brownian reorientation model
We suppose that the reorientation of the molecular

dipoles is a Brownian motion in� uenced by deterministic
forces, which re� ect the symmetry of the molecular
packing in the smectic layers. The eŒective pair potential
for a molecular rotator depends on a polar angle Q
( Õ p < Q < 1 p) of the lateral dipole moment. A Fourier
expansion for this mean � eld potential reads U*(Q) 5
h1 cos (Q) 1 h2 cos (2Q), where h1 and h2 are potential
barriers characterizing the polar and quadrupolar order,
respectively. For slab-like molecules arranged in the
smectic M phase, the � rst Fourier term vanishes (h1 5 0),
whereas for phases with banana-like molecules the polar
term dominates ( |h1 | |h2 | ). There are serious math- Figure 2. Triangular model potential. The integers n denote

regions between the de� ection points.ematical problems in evaluating the transition probability
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781Brownian reorientation in Sm phases

equation with hermitean operator solved by using the ansatz

Y
n
(Q) 5 a

n,n
exp (1 ik

n
Q) 1 b

n,n
exp ( Õ ik

n
Q) (14)ADR

d2

dQ2
Õ VBY

n 5 Õ l
n
Y

n
(6 )

where n denotes a region between two de� ection points.
where V 5 DR [(1/2bdU/dQ)2 Õ 1/2bd2U/dQ2]. At the

Inserting equation (14) in (6) yields the eigenvalues
de� ection points of the potential U the solutions of
equation (6) must obey the conditions [9]

l
n

5 DR k2
n
1 V . (15)

[exp (1 bU/2)Y
n
]Q

0 Õ 0 5 [exp (1 bU/2)Y
n
]Q

0+0
(7 )

There is always a solution for the eigenvalue l0 5 0,
and namely Y0 5 C0 exp (Õ bU/2 ) with the normalization

constant C0 5 1/[2p sinh(H
i
)/Hi

]1/2, (i 5 1, 2). The con-
ditions (7, 8) lead to a set of linear equations for theCexp ( Õ bU/2)AdY

n
dQ

1
1

2
Y

n

d(bU)

dQ BD
Q
0 Õ 0 coe� cients a

n,n
and b

n,n
. These equations allow evaluation

of k
n

from the condition that this linear system has
5 Cexp ( Õ bU/2)AdY

n
dQ

1
1

2
Y

n

d(bU)

dQ BD
Q
0+0

(8) non-trivial solutions.

Choosing normalized eigenfunctions
4.1. Dipolar order

The linear equations resulting from potential (3 ) andP +p

Õ p

dQY
m

Y*
n 5 d

mn
(9 )

conditions (7) and (8) yield k
n 5 n where n runs over all

integers Õ < n < . For n Þ 0 the eigenvalues are
the transition probability has the representation [9]

l
n

5 DR n2 1 DR AH1
p B2

. (16)P(Q, t|Q ¾ , 0) 5
Y0 (Q)

Y0 (Q ¾ ) �
n

Y
n
(Q)Y*

n
(Q ¾ ) exp ( Õ l

n
t)

(10) Taking into account the degeneracy l
Õ n 5 l

n
the

corresponding eigenfunctions can be expressed asand the ground state function attributed to the eigen-
value l0 5 0 is given by Y0 (Q) 5 [Peq (Q)]1/2. Combining

Y
n
(Q) 5 C

n
[cos (nQ) Õ r*

n
sin (nQ)] for Õ p < Q < 0the expansion (10) and formula (2) the correlation

function is written as (17)

K(t) 5 K0 1 �
n Þ 0

K
n

exp ( Õ l
n
t) (11) Y

n
(Q) 5 C

n
[cos (nQ) 1 r

n
sin (nQ)] for 0 < Q < 1 p

(18)
where the coe� cients are de� ned by

where
K

n
5 P +p

Õ p

dQ P +p

Õ p

dQ ¾ Y0 (Q)Y0 (Q ¾ )Y
n
(Q)Y

n
(Q ¾ )

C
n

5 1/[p(1 1 r
n
r*
n

)]1/2
Ö cos (Q Õ Q ¾ ), (n 5 0, Ô 1, Ô 2, ¼ ). (12)

and
Using formula (1) for the susceptibility we arrive at

r
n

5
H1
pn

1 iC1 1 AH1
pnB2D1/2

(19)x(v) 5 x0 �
n Þ 0

1 1 it
n
v

1 1 (t
n
v)2

K
n

(13)

with the relaxation times t
n 5 1/l

n
, (n 5 Ô 1, Ô 2, …). It (r*

n
is the conjugate complex of r

n
). Using these eigen-

is easily proved that the condition K0 1 S
n Þ 0

K
n 5 1 is functions the evaluation of the coe� cients K

n
in the

satis� ed. susceptibility (13) yields

4. Evaluation of the eigenfunctions
K0 5 64p2C4

0
H2

1
(4H2

1 1 p2 )2
cosh2 (H1 ),In the regions between two de� ection points the

potential U is a linear function of the angle Q. Then
the potential entering into equation (6) reduces to V 5 K1 5 128p4C2

0C2
1

H2
1 1 2p2

(H2
1 1 4p2 )2 H2

1
sinh2 (H1 /2)

DR (1/2dbU/dQ)2. For n Þ 0 the eigenvalue problem is
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782 H. Schlacken and P. Schiller

and (0 < n < , n integer) . Note, that k
n 5 2n 1 1 for H2 5 0.

The eigenfunctions connected with l
2n+1

are

K
n 5 32C2

0C2
n
H2

1p4
H2

1 1 p2 (n2 1 1)
[H2

1 1 p2 (n Õ 1)2 ]2[H2
1 1 p2 (n 1 1)2 ]2 Y

2n+1
(Q) 5 D

n
[ 1 exp ( Õ ik

n
Q) Õ exp ( Õ ik

n
(Q 1 p) )]

for Õ p < Q < 0 (26)
Ö [exp (H1 /2) 1 ( Õ 1)n exp ( Õ H1 /2)]2 (n > 2).

and

4.2. Quadrupolar order Y
2n+1

(Q) 5 D
n
[ Õ exp ( Õ ik

n
(Q Õ p )) 1 exp (Õ ik

n
Q)]

The linear set of equations resulting from the con-
for 0 < Q < 1 p (27)ditions (7) and (8) at the de� ection points of the potential

(4) has non-trivial solutions if the condition with the normalization constants

D
n

5
1
2NCpA1 Õ

sin (k
n
p)

k
n
p BD1/2

. (28)sinAk
n

p

2BCcosAk
n

p

2B 1
2H2
pk

n
sinAk

n

p

2BD
For the eigenvalues lÄ

2n+1
we obtain

Ö CcosAk
n
p

2B Õ
2H2
pk

n
sinAk

n
p

2BD 5 0 (20)
YÄ

2n+1
(Q) 5 Õ 2iDÄ

n
sin (kÄ

n
(Q 1 p))

for Õ p < Q < Õ p/2, (29)

is satis� ed. Two types of solution obeying the condition YÄ
2n+1

(Q) 5 1 2iDÄ
n

sin (kÄ
n
Q)

Y
2n

(Q 1 p) 5 1 Y
2n

(Q) and Y
2n+1

(Q 1 p) 5 Õ Y
2n+1

(Q)
for Õ p/2 < Q < 1 p/2 (30)

can be distinguished. The � rst one is connected with the
andzeros k

n
5 2n of the � rst term in equation (20) and

provides the eigenvalues YÄ
2n+1

(Q) 5 Õ 2iDÄ
n

sin (kÄ
n
(Q Õ p) )

for 1 p/2 < Q < 1 p. (31)
l
2n 5 DR (2n)2 1 DR A2H2

p B2
(21)

After replacing k
n

by kÄ
n

the formula for the normalization
constants DÄ

n
coincides with that for D

n
. It should be(1 < n< , n integer). The corresponding eigenfunctions

mentioned that the value of kÄ 0 is imaginary if H2 > 1are

5. DiscussionY
2n

(Q) 5 C
n
[cos (2nQ) 1 r

n
sin (2nQ)] for

The isotropic state with H1 5 0, H2 5 0 and Peq 5 1/2p
Õ p < Q < Õ p/2 and 0 < Q < 1 p/2 (22)

corresponds to the symmetry of the smectic A phase. In
this case the model leads to a simple Debye spectrumand

Y
2n

(Q) 5 C
n
[cos (2nQ) Õ r*

n
sin (2nQ)] for x(v) 5 x0

1 1 it1v

1 1 (t1v)2
(32)

Õ p/2 < Q < 0 and 1 p/2 < Q < 1 p (23)
with the relaxation time t1 5 1/DR . The static susceptibility

where the coe� cients C
n

and r
n

are evaluated by the varies only slightly if the temperature T is changed.
formulae (19) replacing H

1
by H2 . The second type of The dielectric spectrum obtained from the rotator

eigenfunction has two sets of eigenvalues model is modi� ed for con� gurations with quadrupolar
order. For example, the smectic M phase possesses a
twofold rotation axis perpendicular to the layer planes.l

2n+1
5 DRk2

n
1 DR A2H2

p B2
with

In this case the eŒective potential (4) is consistent with
the symmetry requirements. If the potential barrier H2 is
low or moderately high only two relaxation modes makeH2 5 Õ

k
n
p

2
cot Ak

n
p

2 B (24)
a substantial contribution to the dielectric spectrum.
Neglecting modes with small amplitudes we obtainand

x(v) x0C 1 1 it1v

1 1 (t1v)2
K1 1

1 1 itÄ 1v

1 1 (tÄ 1v)2
KÄ 1D (33)

lÄ
2n+1 5 DRkÄ 2

n
1 DR A2H2

p B2
with

where t1 5 1/l1 , tÄ 1 5 1/lÄ 1 , and K1 , KÄ 1 are de� ned by
the relation (12). If H2 � 0 the relation (32) for theH2 5 1

kÄ
n
p

2
cot AkÄ

n
p

2 B (25)
isotropic case is obtained (K1

� 1/2, KÄ 1
� 1/2 and
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783Brownian reorientation in Sm phases

tÄ 1 � t1 ). The relaxation time t1 slightly diminishes, while
tÄ 1 strongly increases with increasing potential barriers
H2 > 0. If H2 is su� ciently large, both modes are well
separated in a Cole–Cole plot (� gure 3).

Finally, we consider the spectrum for dipolar order. If
H1 Þ 0, polar order with parallel oriented dipole moments
appears. The alignment is not necessarily accompanied
by the formation of a ferroelectric phase, since the direction
of the molecular dipole moments m can alternate in such
a way that an antiferroelectric structure is formed. For
example, an antiferroelectric order occurs in the smectic
B2 phase, which consists of banana- or chevron-like
molecules. In this phase the dipole moments are anti-
parallel in adjacent smectic layers. The strength of the

Figure 4. Cole–Cole plot for the potential (3). Even for largedipole orientational order in the smectic layers can be
values of H1 the spectrum remains Debye-like.

characterized by the � rst term K0 of the correlation
function. For the triangular potential (3) this term can
be written as K0 5 7 cos Q 8 2, where results [7] indicate two relaxation modes accompanied

with rotation around the molecular long axes. The
ratio of both relaxation times exceeds two orders of7 cos Q 8 5 Õ

4H2
1

4H2
1 1 p2

coth (H1 ) (34)
magnitude. Only the high frequency mode is to be
related to the molecular reorientation process con-is the order parameter for the dipole alignment. The polar
sidered in this paper. The low frequency mode is assumedorder becomes more pronounced if the temperature is
to be cooperative and probably re� ects the response ofreduced, or if the potential barrier H1 is increased. For
the antiferroelectric long range order to the externalH1 � the values of 7 cos Q 8 and K0 tend to one.
electric � eld.Because of S

n Þ 0
K

n 5 1 Õ K0 the static susceptibility can
It should be mentioned that dipolar and quadrupolarbe expressed as x(v 5 0) 5 x0 (1 Õ 7 cos Q 8 2 ). Obviously,

order also exist in the ferroelectric smectic C* phase.the susceptibility decreases with increasing polar order or
Using a Landau theory, Carlsson et al. [11] predictedincreasing potential barrier H1 . As K1 K

n
(n 5 2, 3, …),

a splitting of the high frequency dielectric relaxationthe main contribution to the dielectric spectrum results
mode (polarization mode) attributed to the hinderedfrom a single relaxation process. As shown in � gure 4,
rotation of the molecules around their long axes. However,even for large values of H1 the dielectric spectrum
experimental investigations did not reveal such a split-remains well approximated by a simple Debye spectrum.
ting. The spectra of the smectic C* and the adjacentFor H1

� both the susceptibility x(v) and the relaxation
smectic A* phase were not found to be signi� cantlytime t tend to zero.
diŒerent. Our Brownian reorientation model predictsThe model with polar order (H1 Þ 0) should be appro-
two separated relaxation modes if the potential barrierpriate for the antiferroelectric B2 phase. Experimental
H2 (accompanied with quadrupolar order) is su� ciently
high. But in the ferroelectric C* phase, the barrier is
much lower than the mean thermal energy kT [12].
Therefore both relaxation times nearly coincide and the
splitting of the spectrum cannot be resolved experimentally .

Financial support by the Fonds der Chemischen
Industrie and the Kultusministerium Sachsen-Anhalt
(project 2828A) is gratefully acknowledged.
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